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a b s t r a c t

The study of radially symmetric compressible fluid flows is interesting both from the the-
oretical and numerical points of view. Spherical explosion and implosion in air, water and
other media are well-known problems in application. Typical difficulties lie in the treat-
ment of singularity in the geometrical source and the imposition of boundary conditions
at the symmetric center, in addition to the resolution of classical discontinuities (shocks
and contact discontinuities). In the present paper we present the implementation of direct
generalized Riemann problem (GRP) scheme to resolve this issue. The scheme is obtained
directly by the time integration of the fluid flows. Our new contribution is to show rigor-
ously that the singularity is removable and derive the updating formulae for mass and
energy at the center. Together with the vanishing of the momentum, we obtain new
numerical boundary conditions at the center, which are then incorporated into the GRP
scheme. The main ingredient is the passage from the Cartesian coordinates to the radially
symmetric coordinates.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The study of radially symmetric compressible fluid flows is classical [11], and theoretical and numerical considerations
have been taken over past decades [28]. Spherical explosion and implosion in air, water and other media are typical exam-
ples [2]. Unlike one-dimensional case, spherical flow patterns are quite complex and new shocks can be born in unexpected
regions [9,14]. Numerically speaking, we need to overcome the difficulty of geometrical singularity at the symmetric center
and impose appropriate numerical boundary conditions, in addition to dealing with the resolution of classical discontinuities
(shocks and contact discontinuities).

There were quite a few methods for the radially symmetric flows in the literature. In [3,12] the GRP method was used to
track discontinuities. Their focus was not on the numerical treatment of the singularity at the center, but on the geometrical
effect on numerical fluxes. In [30] the Glimm-type scheme was proposed, combined with operator splitting for the source
term. Due to the inherent nature of Glimm scheme for hyperbolic conservation laws, it is at most first order. Furthermore,
the operator splitting has well-known discrepancy in capturing steady state and in balancing flux gradient and the source. In
[18] a practical method was devised by directly reducing the two-dimensional scheme in Cartesian coordinates to that in
polar coordinates. In [23] the radially symmetric flows were studied by a modified Harten’s TVD scheme. In most previous
schemes, there were no systematic analysis of numerical boundary conditions and their imbedding into numerical schemes.
. All rights reserved.
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In this paper a particular concern is about numerical boundary conditions at the center r ¼ 0 for the case of space dimen-
sion more than one. On one hand, no data is theoretically necessarily imposed on r ¼ 0 because the presence of this bound-
ary is totally caused by coordinate transformation. On the other hand, we require proper numerical boundary conditions in
the implementation of the scheme although the vanishing velocity was often used through the symmetry argument in the
literature. In addition, we need to overcome the singularity in the source of type 1=r. Here we rigorously show that the sin-
gularity is removable at the center r ¼ 0 and derive the updating formulae for mass and total energy. Together with the van-
ishing of momentum at the center, we obtain numerical boundary conditions, which are then incorporated into the GRP
scheme. In this context, our main ingredient is to use the Jocobian factor from the Cartesian coordinates to the radially sym-
metric coordinates in order to remove the singularity factor 1=r in the source term. We point out that in the literature the
velocity is often assumed to be zero at the center with the reflection boundary condition for (2.1) by the symmetry assump-
tion. This treatment actually leads to the inconsistency with the governing Eq. (2.1), see Remark 3.3.

In the GRP scheme, the key point is how to solve the corresponding generalized Riemann problem at each grid point,
which was originally achieved in [4] and subsequent works, e.g. [5,6]. The distinct feature of that original GRP scheme is
the analytic resolution of curved rarefaction waves, and is based on the relevant Lagrangian scheme. In order to avoid the
Lagrangian version and treat complicated sonic cases, we introduced Riemann invariants in [8,21] to resolve centered rare-
faction waves (CRW). Thus the present scheme is directly Eulerian with easy extension to multi-dimensions and no special
treatment is required for sonic cases. Indeed, this technique was already used for shallow water equations [20], compressible
fluid flows [8] and more general systems [7]. The further advantage of this approach is that the source term (geometrical)
effect is included in numerical fluxes. This can be seen from the following simple scalar equation:
@u
@t
¼ � @f ðuÞ

@r
þ sðr;uÞ; ð1:1Þ
where the time derivative is replaced by the spatial derivative plus the source term via the Lax–Wendroff approach. Then
this fact is built into the numerical fluxes as an important ingredient in the GRP scheme. Just at this point, we always have
second order accuracy in time even though the initial data is given to be piecewise constant (first order in space), see Remark
4.2. The discretization of source term is realized with the mid-point rule in time and the trapezoidal rule in space in order to
balance the variation of fluxes well, which is an important factor to devise a well-balanced scheme, see Remark 2.3.

The purpose of this work is to extend the GRP scheme to solve the radially symmetric flows and the resulting scheme is
different from [3,12,22]. We pay our special attention to the treatment of the geometrical singularity at the center and the
numerical boundary conditions. We point out in passing that our approach can also be applied to duct flows of variable
cross-section. In addition, we often use acoustic approximation in the GRP scheme when the state changes small at a grid
point. To show the performance of the current method, we apply it to the Noh problem of spherically converging flows,
the Sedov–Taylor strong point explosion problem, explosion and implosion problems. The Noh problem and the Sedov–Tay-
lor problem have exact solutions [6,25,29] so that there are explicit illustrations about the performance of the present
scheme. The analysis and simulations of explosion and implosion problems can be found in [27,24,26,9,10,13,18,23,30]
and references therein. We can compare to show our results are competitive.

We organize this paper as follows. In Section 2 we summarize our generalized Riemann problem (GRP) scheme. The
numerical boundary conditions at r ¼ 0 are rigorously derived in Section 3. The generalized Riemann problem at each grid
point is resolved in Section 4 for the spherical flows. The useful acoustic approximation is given in Section 5. We simulate the
Noh problem, the Sedov–Taylor problem, the explosion and implosion problems, as typical examples, to validate the present
scheme in Section 6. To make the present paper self-contained, we put some detailed derivation of the GRP scheme and use-
ful notations in Appendices.

2. Implementation of the GRP scheme

The equations of radially symmetric compressible fluid flows can be written in the form,
@U
@t
þ @FðUÞ

@r
¼ Wðr;UÞ;

U ¼
q
qu

qE

0B@
1CA; FðUÞ ¼

qu

qu2 þ p

uðqEþ pÞ

0B@
1CA; Wðr;UÞ ¼ �m� 1

r

qu

qu2

uðqEþ pÞ

0B@
1CA; ð2:1Þ
where E ¼ eþ u2

2 . q;u; e are density, radial velocity and internal energy, respectively, and p ¼ pðq; eÞ is the pressure, r P 0 is
the radius. The integer m represents the spatial dimension number. As m ¼ 1;2;3, (2.1) describes planar, cylindrical and
spherical flows, respectively. The source term Wðr;UÞ is geometrical and results from the transformation from the Cartesian
coordinates to the radially symmetric coordinates.

Remark 2.1. System (2.1) can also be expressed as
@rm�1U
@t

þ @rm�1FðUÞ
@r

¼ eWðr;UÞ; eWðr;UÞ ¼ ðm� 1Þrm�2ð0;p; 0Þ>: ð2:2Þ
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This form illustrates the conservation of mass and energy clearly, as well as the influence of geometry on the momentum. In
the GRP scheme, we prefer to use (2.1) since all computations are performed for the primitive variables.

We propose to develop a high resolution numerical scheme for (2.1) by the analytic time integration. The scheme is
implemented with the main ingredient of the resolution of the generalized Riemann problem (GRP) for (2.1) at each grid
point rjþ1=2 ¼ ðjþ eÞDr; j P 0, subject to the piecewise linear data
Uðr; tnÞ ¼ Un
j þ rn

j ðr � rjÞ; r 2 ðrj�1=2; rjþ1=2Þ; j ¼ 0;1; . . . ;K; ð2:3Þ
where we divide a computational domain ½0;M� into K þ 1 cells Cj ¼ ðrj�1=2; rjþ1=2Þ; rj ¼ 1
2 ðrj�1=2 þ rjþ1=2Þ;0 6 j 6 K , and set

r�1=2 ¼ 0, the small parameter 0 < e 6 1 being introduced numerically in order to deal with the singularity at the center
r ¼ 0. Thus the cell C0 ¼ ½0; eDr� represents the left boundary cell at the center r ¼ 0 and the cell CK ¼ ½rK�1=2; rKþ1=2� is the
right boundary cell. In practice, we choose e ¼ 1. The vector rn

j is the constant slope of Uðr; tnÞ over cell Cj at time
tn ¼ nDt; j 2 f0g [ Zþ;n 2 Zþ;Dr is the length of the cell Cjðj > 1Þ and Dt the size of time step. Within the accuracy of second
order, we use mid-point values
Unþ1=2
jþ1=2 ¼ Uðrjþ1=2; ðnþ 1=2ÞDtÞ; j ¼ 0;1; . . . ;K � 1; ð2:4Þ
to incorporate into numerical fluxes and the discretization of the source term. Here we summarize the major steps of the GRP
method, as in [4,8], in the following:

Step 1. Given piecewise linear initial data (2.3), we calculate mid-point values Unþ1=2
jþ1=2 approximately,
Unþ1=2
jþ1=2 ¼ Un

jþ1=2 þ
Dt
2

@U
@t

� �n

jþ1=2
; j ¼ 0;1; . . . ;K � 1; ð2:5Þ
where ð@U=@tÞnjþ1=2 will be given in Section 4 and particularly in Section 5 for acoustic approximation. The notation
Un

jþ1=2 ¼ UAðrjþ1=2; tn þ 0Þ and UAðr; tÞ is the local solution at ðrjþ1=2; tnÞ to the following Riemann problem:
@U
@t
þ @FðUÞ

@r
¼ 0; r > 0; t > tn;

Uðr; tnÞ ¼
UL :¼ Un

j þ ðrjþ1=2 � rjÞrn
j ; r < rjþ1=2;

UR :¼ Un
jþ1 þ ðrjþ1=2 � rjþ1Þrn

jþ1; r > rjþ1=2:

( ð2:6Þ
which can be solved by an exact or approximate Riemann solver [32].
Step 2. Evaluate the interior cell averages Unþ1

j ; j ¼ 1; . . . ;K � 1; by using the updating formula
Unþ1
j ¼ Un

j �
Dt
Dr

FðUnþ1=2
jþ1=2 Þ � FðUnþ1=2

j�1=2 Þ
� �

þ Dt
2

Wðrjþ1=2;U
nþ1=2
jþ1=2 Þ þWðrj�1=2;U

nþ1=2
j�1=2 Þ

� �
: ð2:7Þ
The source term Wðr;UÞ is discretized with the mid-point rule in time and the trapezoidal rule in space. For the boundary
value Unþ1

0 , we have ðquÞnþ1
0 ¼ 0, and
qnþ1
0 ¼ qn

0 �m � Dt
eDr
ðquÞnþ1=2

1=2 ; ðqEÞnþ1
0 ¼ ðqEÞn0 �m � Dt

eDr
ðuðqEþ pÞÞnþ1=2

1=2 : ð2:8Þ
These will be given in Section 3. We use the transmission boundary condition at the right boundary [15].
Step 3. Update the slope rnþ1

j by the following procedure. Define:
Unþ1;�
jþ1=2 ¼ Un

jþ1=2 þ Dt
@U
@t

� �n

jþ1=2
; j ¼ 0;1; . . . ;K � 1; rnþ1;�

j ¼ 1
Dr
ðDUÞnþ1;�

j :¼ 1
Dr
ðUnþ1;�

jþ1=2 � Unþ1;�
j�1=2 Þ; j ¼ 1; . . . ;K � 1:

ð2:9Þ
In order to suppress local oscillations near discontinuities, we apply to rnþ1;�
j a monotonicity algorithm-slope limiter,
rnþ1
j ¼minmod a

Unþ1
j � Unþ1

j�1

Dr
;rnþ1;�

j ;a
Unþ1

jþ1 � Unþ1
j

Dr

 !
; j ¼ 2; . . . ;K � 1;

rnþ1
1 ¼minmod a

Unþ1
1 � Unþ1

0

ðeþ 1ÞDr=2
;rnþ1;�

1 ;a
Unþ1

2 � Unþ1
1

Dr

 !
; rnþ1

0 ¼ minmod
Unþ1�

1=2 � Unþ1
0

eDr=2
;rnþ1

1

 !
;

rnþ1
K ¼minmod

Unþ1;�

K�1=2 � Unþ1
K�1

Dr=2
;rnþ1

K�1

 !
; ð2:10Þ
where the parameter a 2 ½0;2Þ. This monotonicity algorithm corresponds a non-sawtooth case for a 2 ½0;1� and a sawtooth
case for a 2 ð0;2Þ. In our scheme, a is taken in [1.5,2). The minmod function can be found in [4,15].
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Remark 2.2. As rjþ1=2 is close to zero ðj P 0Þ, there is a singularity factor 1=rjþ1=2 in W. This does not cause any problem. In
fact, Dr and Dt coexist so that Dt=Dr is bounded, which is implied by the standard CFL condition.

Remark 2.3. In (2.7) we use the (mid-point) values Unþ1=2
jþ1=2 in the discretization of source term W. Note that these values are

already computed for numerical fluxes without extra manipulation. In addition such discretization can keep second order
accuracy both in space and time (trapezoidal rule in space and mid-point rule in time), and to well balance the variation
of fluxes.

Remark 2.4. The key part of the GRP scheme is the calculation of ð@U=@tÞnjþ1=2, which is obtained by solving (4.4) and (4.7), to
be presented in Section 4. When the acoustic approximation is applied, we go to Section 5. All coefficients can be consulted in
Appendix E. Therefore, in the practical implementation of the GRP scheme, we just need to use this framework and consult
the coefficients in Appendix E and leave the other parts for the mathematical interest.
3. The boundary condition at the center

As noted in many literatures [1,23,30], there are two major difficulties near the center r ¼ 0: Numerical boundary con-
ditions and the singular nature proportional to 1=r. The latter is relatively simple and it can be settled down with the CFL
restriction. The former is an inherent problem in the scheme.

We will first show a local compatibility relation between the space variation and the time evolution of conservative vari-
ables at the center. The vanishing of velocity (equivalently the momentum) can be obtained simply through the symmetry
argument [1,6,14,23]. This relation will further provide the consistency of the numerical boundary conditions in Proposition
3.2 with the governing systems (2.1).

Proposition 3.1. At the center r ¼ 0, the velocity must vanish, i.e. uð0; tÞ � 0, and the derivatives of mass and energy satisfy
@q
@t

� �
0
þm

@ðquÞ
@r

� �
0
¼ 0;

@ðqEÞ
@t

� �
0
þm

@ðqEþ pÞu
@r

� �
0
¼ 0; ð3:1Þ
provided that the flow is smooth, where the subscript 0 stands for the flow state at the center.

Proof. The integral mass conservative laws for a fixed domain X can be written as follows:
@

@t

Z
X
qdV þ

Z
@X

q~v �~ndS ¼ 0; ð3:2Þ
where ~v is the velocity vector, ~n is the outward normal unit vector pertaining to the domain boundary @X.

(I) Spherically symmetric flow ðm ¼ 3Þ: For the spherically symmetric flow, X is taken as a sphere of radius Dr centered at the
origin. With the spherical coordinate transformation, (3.2) can be rewritten as
Z 2p

0
d/
Z p

0
sin hdh

Z Dr

0
r2 @q
@t

dr þ ðDrÞ2quðDr; tÞ
Z 2p

0
d/
Z p

0
sin hdh ¼ 0: ð3:3Þ
Using the mean value theorem of integration, (3.3) can be reduced to
@qðnDr; tÞ
@t

þ 3
quðDr; tÞ

Dr
¼ 0; ð3:4Þ
where 0 6 n 6 1. With the symmetry argument, we conclude the velocity (or momentum) vanishes at the center, i.e,
uð0; tÞ ¼ 0. Therefore, (3.4) immediately implies the first identity of (3.1). Similarly, we obtain the second identity.

(II) Cylindrically symmetric flowðm ¼ 2Þ: In a similar way, we can show that Proposition 3.1 holds for the cylindrically sym-
metric flow, for which X is now taken to be a small cylinder of radius Dr and any height Dz centered at the origin. h

We are now at the position to find numerical boundary data at r ¼ 0, which is the main contribution in the present paper.
The result is stated in the following proposition.

Proposition 3.2. The numerical boundary condition Unþ1
0 ¼ ðqnþ1

0 ; ðquÞnþ1
0 ; ðqEÞnþ1

0 Þ> at the center r ¼ 0 can be expressed as
follows:
qnþ1
0 ¼ qn

0 �m � Dt
eDr
ðquÞnþ1=2

1=2 ; ðquÞnþ1
0 ¼ 0; ðqEÞnþ1

0 ¼ ðqEÞn0 �m � Dt
eDr
ðuðqEþ pÞÞnþ1=2

1=2 ; ð3:5Þ
where the mid-point value Unþ1=2
1=2 can be obtained by (2.5) and 0 < e� 1 is a constant.

Proof. From Proposition 3.1, we know that uð0; tÞ � 0. Then we consider the momentum average over the cell ½0; eDr�,
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ðquÞ0 :¼ 1
eDr

Z eDr

0
quðr; tÞdr: ð3:6Þ
As e is sufficient small, we have approximately
ðquÞ0 ¼
1

eDr

Z eDr

0
quðr; tÞdr ! quð0; tÞ ¼ 0: ð3:7Þ
This is compatible with quð0; tÞ � 0 as e! 0. Thus we take ðquÞnþ1
0 ¼ 0 as the constant e is small.

For the evolution of mass and energy, we use the finite volume formulation of (2.1) over the control volume
½0; eDr� � ½tn; tnþ1� with a multiplication factor rm�1;m > 1,
Z tnþ1

tn

Z eDr

0
rm�1 @U

@t
drdt þ

Z tnþ1

tn

Z eDr

0
rm�1 @FðUÞ

@r
drdt ¼

Z tnþ1

tn

Z eDr

0
rm�1Wðr;UÞdrdt; ð3:8Þ
where the factor rm�1 plays an important role of the Jacobian in the transformation from the Cartesian coordinates to the
spherical coordinates. When this idea is used, both the singularity at r ¼ 0 can be removed and the source term can be effec-
tively treated.

With the simple technique of numerical integration, we obtain formally
Z tnþ1

tn

Z eDr

0
rm�1 @U

@t
drdt ¼ ðeDrÞm

m
� ðUnþ1

0 � Un
0Þ þ OððDrÞmþ2Þ; ð3:9Þ
where Un
0 is the average value of Uðr; tnÞ over the cell ½0; eDr�,
Un
0 ¼

1
eDr

Z eDr

0
Uðr; tnÞdr: ð3:10Þ
We take the integration by parts for the second term in the left hand side of (3.8) to obtain
Z tnþ1

tn

Z eDr

0
rm�1 @FðUÞ

@r
drdt ¼

Z tnþ1

tn

rm�1FðUð�; tÞÞjeDr
0 dt �

Z tnþ1

tn

Z eDr

0
ðm� 1Þrm�2FðUÞdrdt

¼ ðeDrÞm�1
Z tnþ1

tn

FðUðeDr; tÞÞdt � ðm� 1Þ
Z tnþ1

tn

Z eDr

0
rm�2FðUÞdrdt: ð3:11Þ
When the mass and energy equations of (2.1) are considered separately, we obtain by incorporating (3.8) and (3.9),
qnþ1
0 ¼ qn

0 �
m
eDr

Z tnþ1

tn

quðeDr; tÞdt; ðqEÞnþ1
0 ¼ ðqEÞn0 �

m
eDr

Z tnþ1

tn

uðqEþ pÞðeDr; tÞdt: ð3:12Þ
Then we use the mid-point rule to evaluate the single time integrals and obtain (3.5) within second order accuracy. h

Remark 3.3. In the literature, a reflection boundary condition is often adopted at the center for (2.1) directly, the velocity is
assumed to be zero and the (geometrical) source does not take effect. Then the updating formulae at the first cell C0 become
(3.1) with m ¼ 1. This leads to the inconsistency with the governing Eq. (2.1).

Remark 3.4. Here we provide the updating formulae for the density and energy (3.5), which are compatible with (3.1). Cer-
tainly, (3.5) can also be derived from (2.2) with almost the same argument. We should notice that all above arguments are
based on the smooth assumption, which is not always realistic, for example, mainly at the collision of shocks. Nevertheless,
these boundary conditions are shown to be effective when applied to the examples in Section 6.
4. The resolution of the generalized Riemann problem

In order to derive the GRP scheme, we need to solve the generalized Riemann problem for (2.1) at each grid point
ðr; tÞ ¼ ðrjþ1=2; tnÞ; j ¼ 0; . . . ;K � 1. For convenience, we set the cell interface, as in the usual setting of the generalized Rie-
mann problem, as ðr0; 0Þ :¼ ðrjþ1=2; tnÞ; r0 > 0, and assume the piecewise linear data as
Uðr;0Þ ¼
UL þ ðr � r0ÞU0L; r < r0;

UR þ ðr � r0ÞU0R; r > r0;

(
ð4:1Þ
where UL;UR;U
0
L and U0R are constant vectors,
UL ¼ Un
j þ ðrjþ1=2 � rjÞrn

j ; UR ¼ Un
jþ1 þ ðrjþ1=2 � rjþ1Þrn

jþ1; U0L ¼ rn
j ; U0R ¼ rn

jþ1; ð4:2Þ
and they can be found in (2.6). Then the solution Uðr; tÞ of (2.1) and (4.1) is smooth at least for a short time along the inter-
face r ¼ r0. Denote
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U� ¼ Uðr0; 0
þÞ ¼ lim

t!0þ
Uðr0; tÞ;

@U
@t

� �
�
¼ @U
@t
ðr0;0

þÞ ¼ lim
t!0þ

@U
@t
ðr0; tÞ: ð4:3Þ
The value U� is nothing but the limiting value at t ¼ 0 of the Riemann solution UAðr; tÞ along r ¼ r0, which is obtained by
solving the Riemann problem (2.6). This solution UAðr; tÞ determines the local structure of Uðr; tÞ at r ¼ r0, see [19]. Hence
we are left with the calculation of ð@U=@tÞ�.

The instantaneous value ð@U=@tÞ� is calculated depending on local wave configurations. If the t-axis is located inside the
intermediate region (a wave propagates to the left and a wave to the right), we need to solve a linear system of two-equa-
tions. Otherwise, the value is just taken upwind.

Proposition 4.1 (Nonsonic case). Assume that the t-axis is located in the intermediate region. Then the limiting values ð@p=@tÞ�
and ð@u=@tÞ� satisfy the linear relations
hL
@u
@t

� �
�
þ qL

@p
@t

� �
�
¼ kL; hR

@u
@t

� �
�
þ qR

@p
@t

� �
�
¼ kR; ð4:4Þ
where hL;hR; qL; qR; kL and kR are summarized for all cases in Appendix E, respectively. These parameters depend only on the initial
data (4.1) and the local Riemann solution RAð0; UL;URÞ.

Remark 4.2. Note that if U0L ¼ U0R ¼ 0, the GRP scheme has only first order accuracy in space. However, since the geometrical
source term is present, the terms kL and kR do not vanish and so this scheme still has second order accuracy in time and
includes the source term effect in the numerical fluxes. Certainly, it is reduced to the first order Godunov scheme [16] if
the source term is absent (one-dimensional case).

Remark 4.3. Note that kL and kR include the factor of type 1=r (cf. (E.1)). If r0 	 Dr ! 0, we need special treatment. In prac-
tice, we propose to obtain the value Dt � @U

@t at ðr0;0Þ instead of @U
@t . Hence we multiply (4.4) by Dt to obtain,
hL � Dt
@u
@t

� �
�
þ qL � Dt

@p
@t

� �
�
¼ kLDt; hR � Dt

@u
@t

� �
�
þ qR � Dt

@p
@t

� �
�
¼ kRDt: ð4:5Þ
Using the fact that Dt 	 Dr 	 r0 by the CFL condition, the singularity caused by 1=r0 can be removed. Thus we replace (4.4) by
(4.5) to obtain a new linear algebraic equations. In other parts, we can take the same approach if r0 is very small.

When the t-axis ðr ¼ r0Þ is located inside a rarefaction fan, we have a sonic case. Since one of the characteristic curves
becomes tangential to the t-axis, the situation becomes much simpler. Indeed, we have the following Proposition.

Proposition 4.4 (Sonic case). Assume that the t�axis is located inside the rarefaction wave associated with the u� c
characteristic family. Then we have
@u
@t

� �
�
¼ dL þ

m� 1
r0

u2
� ;

@p
@t

� �
�
¼ q�u�dL; ð4:6Þ
where dL is given in (E.3), and c1� ¼ u� in (E.3).

Remark 4.5. The approach to prove Proposition 4.4 can be found in the proof of Theorem 5.4 in [8, p. 30].

Now it remains to calculate ð@q=@tÞ�. This calculation depends on whether the contact discontinuity propagates to the left
or the right. To be more precise, we calculate ð@q=@tÞ� from the left-hand side if u� > 0; and in the right-hand side if u� < 0.

Proposition 4.6. The computation of ð@q=@tÞ� The limiting value ð@q=@tÞ� is calculated as follows, depending on the propagation
of contact discontinuity:
gq
@q
@t

� �
�
þ gp

@p
@t

� �
�
þ gu

@u
@t

� �
�
¼ f ; ð4:7Þ
where gq; gp; gu and f are constant, depending on the initial data (4.1) and the associated Riemann solution RAð0; UL;URÞ. They are
expressed in Appendix E.

Remark 4.7. When all the waves move to right, as shown in Fig. 4.1, the region I is smooth. The limiting values ð@U=@tÞ� are
derived from the system (2.1) directly,
@q
@t

� �
�
¼ � qLu0L þ uLq0L þ

m� 1
r0

qLuL

� �
;

@p
@t

� �
�
¼ � uLp0L þ cpLu0L þ

m� 1
r0

cpLuL

� �
;

@u
@t

� �
�
¼ �ðp0L=qL þ uLu0LÞ;

ð4:8Þ
where UL;U
0
L are given in (4.2). When all the waves move to left, we can calculate ð@U=@tÞ� from the right hand, as a result, we

just need to replace UL;U
0
L in (4.8) by UR;U

0
R.



Fig. 4.1. Wave pattern for the GRP. The initial data U0ðrÞ ¼ UL þ ðr � r0ÞU0L for r < r0 and U0ðrÞ ¼ UR þ ðr � r0ÞU0R for r > r0.
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5. Acoustic case

As jUL � URj � 1, we will use the acoustic approximation. Let us look at the initial data Uðr;0Þ in (4.1) satisfying UL ¼ UR

and U0L–U0R. Then the solution to the associated Riemann problem is constant U� ¼ UAðr0;0Þ � UL ¼ UR and only linear waves
emanate from the point ðr0;0Þ. Denote V ¼ U � U�. Then we can linearize (2.1) around U ¼ U� to obtain
@V
@t
þ DFðU�Þ

@V
@r
¼ Wðr0;U�Þ: ð5:1Þ
Diagonalize the system (5.1) to obtain
@W
@t
þKðW�Þ

@W
@r
¼ LðU�ÞWðr0;U�Þ; ð5:2Þ
where W ¼ LðU�ÞV ; L ¼ ðL1; L2; L3Þ; Li is the left (row) eigenvector associated with the eigenvalue ki of
DFðU�Þ; i ¼ 1;2;3; k1 ¼ u� � c�; k2 ¼ u� and k3 ¼ u� þ c�, and K is a diagonal matrix with entries kiðU�Þ. Therefore we can cal-
culate the time derivative of W, as in the scalar case,
@W
@t

� �
�
¼ lim

t!0þ

@W
@t
ðr0; tÞ ¼ �

jKj þK
2

W 0
L þ
jKj �K

2
W 0

R

� �
þ LðU�ÞWðr0;U�Þ; ð5:3Þ
where jKj ¼ diagðjk1j; jk2j; jk3jÞ. Returning to the primitive variables U we obtain
@U
@t

� �
�
¼ @V

@t

� �
�
¼ L�1ðU�Þ

@W
@t

� �
�
: ð5:4Þ
Proposition 5.1 (Acoustic case). When UL ¼ U� ¼ UR and U0L – U0R, we have the acoustic case. If u� � c� < 0 and u� þ c� > 0,
then ð@u=@tÞ� and ð@p=@tÞ� can be solved to be
@u
@t

� �
�
¼ �1

2
ðu� þ c�Þ u0L þ

p0L
q�c�

� �
þ ðu� � c�Þ u0R �

p0R
q�c�

� �� �
;

@p
@t

� �
�
¼ �q�c�

2
ðu� þ c�Þ u0L þ

p0L
q�c�

� �
� ðu� � c�Þ u0R �

p0R
q�c�

� �� �
�m� 1

r0
q�u�c

2
� : ð5:5Þ
Then the quantity ð@q=@tÞ� is calculated from the equation of state p ¼ pðq; SÞ,
@q
@t

� �
�
¼

1
c2
�

@p
@t

� 	
� þ u� p0L � c2

�q0L
� 	h i

if u� ¼ uL ¼ uR > 0;

1
c2
�

@p
@t

� 	
� þ u� p0R � c2

�q0R
� 	h i

; if u� ¼ uL ¼ uR < 0:

8><>: ð5:6Þ
Remark 5.2. We can take the limit UL ¼ U� ¼ UR for the results in Propositions 4.1 and 4.6 to yield Proposition 5.1.
6. Numerical examples

In this section we display several typical examples. One purpose is to illustrate the performance of our scheme. The other
is to show the rich wave patterns in the explosion and implosion problems. In the following numerical examples, c > 1 is the
adiabatic index and a; e are parameters in (2.10) and (3.5), respectively. The Courant number l is defined as
lCFL ¼
Dt
eDr

max
j¼0;1;...;K

ðjun
j j þ cn

j Þ:
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We take lCFL ¼ 0:4. The parameter e is best chosen to be 1.0, in the examples. The effect of various choice of the parameter e
is analyzed through the L1-error. Besides, for the further verification of the present scheme, we compare the GRP results with
the corresponding exact solutions or those by the modified Harten’s TVD scheme [23].

6.1. Noh problem

Our first example is the spherically converging flow of a cold (zero-pressure) perfect gas with c ¼ 5=3, having the uniform
initial conditions
Fig. 6.1
½q;u; p� ¼ ½1;�1;0�; 0 < r 6 100;
which has been proposed by Noh [25] as a test case having an exact (self-similar) solution, see also [24,26] for some recent
simulations. The solution consists of an expanding spherical shock (starting from the center at t ¼ 0). The fluid behind the
shock is quiescent with uniform pressure p and density q. We set initial pressure to be 10�6 instead of zero pressure. We take
the boundary value over the right cell CK ,
½q;u; p�nþ1ðrÞ ¼ ½ð1þ tnþ1=rÞ2;�1;10�6�; r 2 CK ¼ ½rK�1=2; rKþ1=2�;
which is the exact solution at t ¼ tnþ1. Results of the Noh problem are shown in Fig. 6.1. The agreement with the exact solu-
tion is very good, discrepancies occurring primarily for the density distribution near the center. As explained in [6], this error
is due to the ‘‘startup” of the captured shock near the center, where the numerical dissipation generates an entropy higher
than the exact value. These discrepancies can be weakened by using the exact value of solution as the boundary data at the
center [3], which is actually impractical. We can see that our scheme produces a good result in Fig. 6.1 by comparing with
those in [24,26].

Furthermore, we show the relation between L1-error and the parameter e in Fig. 6.2. The relative L1-error is defined as
ku� Uk1 ¼

P
ijui � UijMri=

P
ijuijMri, where ui;Ui are the exact and numerical solutions, respectively. The L1-error becomes

very large as e < 0:2. Hence we just compute L1-error when e P 0:2.
In the following numerical examples, we take c ¼ 1:4.

6.2. The Sedov–Taylor blast wave problem

In our second example, we choose the Sedov–Taylor blast wave problem to simulate strong shock propagation. Numerical
difficulties lie in the low density and the high temperature near the center. The analytical solution is given by Sedov [29]
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. Numerical results for Noh problem: 400 grids are used, a ¼ 1:5. Left column is the GRP solution; and the right-column is the Godunov solution.



Fig. 6.2. L1-error estimate for the Noh problem at T ¼ 225.
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under the assumption that the atmospheric pressure relative to the pressure inside the explosion is negligible. The gas is
initially at rest with q ¼ 1:0; p ¼ 1:08� 105 for 0 6 r 6 1=500 and q ¼ 1:0; p ¼ 10�6 for 1=500 < r 6 1. Results at T ¼ 0:08
are shown in Fig. 6.3. We observe that the density is close to zero nearby the explosion center and the temperature is very
high. The GRP scheme does it quite well, compared to the Godunov scheme, even to those in [27,24,26].

The L1-error is shown in Fig. 6.4 in terms of the parameter e. In analogy with the first example, e ¼ 1 is the best choice in
practice.

6.3. The numerical simulation of spherical explosion in air

For the spherical explosion case, we use the test model that has been analyzed by Brode [10], investigated experimentally
in [9] and simulated in [23]. The gas is initially at rest with q ¼ 21:7333; p ¼ 15:514 for 0 6 r 6 5 and q ¼ 2:0; p ¼ 1:0 for
5 < r 6 50. These data are non-dimensional. The physics for the spherical explosion is quite complex. Besides an inward rar-
efaction wave in the high-pressure region, an outward shock wave in the low-pressure region and a contact discontinuity
between the rarefaction wave and the shock wave, there is a second shock subsequently arising at the tail of the rarefaction
wave as shown by both previous experiments [9,14] and numerical simulations [31,23]. The generation mechanism of the
second shock has been analyzed in length in a previous work [23], the shock is outward-facing before T ¼ 9:5 and becomes
inward-facing subsequently. Because the second shock wave forms in the expanding wave region, it is rather weak initially
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Fig. 6.3. Numerical results for the Sedov–Taylor blast wave problem: 500 grids are used, a ¼ 1:5. Left column is the GRP solution; and the right-column is
the Godunov solution.



Fig. 6.4. L1-error estimate for the Sedov–Taylor blast wave problem at T ¼ 0:08.

Fig. 6-5. The contour curves of velocity and density for the spherical explosion projected onto the ðr; TÞ plane: 500 grids are used, a¼ 1:4.
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Fig. 6.6. Numerical results for the spherical explosion at different times: 500 grids are used, a ¼ 1:4.
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and propagates outwards with the expanding gas. However, its strength increases with time and reaches a fairly high inten-
sity in a short time, stops propagating outwards soon and reverts backwards to implode on the center. Fig. 6.5 has clearly
exhibited the trajectory of the second shock. It shows that the second shock forms at the non-dimensional time about

calim
plosionwiththere”ectionboundarycondition.
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Fig. 6.11. Comparison with the result by the modified Harten’s TVD scheme for the cylindrical implosion problem at time T ¼ 10: 500 grid points are used.
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T ¼ 3:2, stops outward motion at the non-dimensional time about T ¼ 9:5 and finally implodes at the center at the non-
dimensional time about T ¼ 20:1. To look at the details of the flow, Fig. 6.6 displays the profiles of flow density, velocity,
pressure and internal energy at three different instants. As shown, at T ¼ 15, the second shock has formed and is moving
inwards to the location about r ¼ 6:0. Just after the implosion of the second shock at the center at T ¼ 20:2, the pressure
and internal energy (thus temperature) at the center increase greatly (please look at the profiles indicated with symbol ‘‘cir-
cle” in Fig. 6.6). After the implosion and reflection of the shock at the center, a reflected shock is generated and moves out-
wards with a rapid decrease of strength as shown in Fig. 6.6 at T ¼ 25:0. The reflected shock will interacting with the moving
contact discontinuity and even more complex physics will occurs as discussed in [23]. The present work stops computation
at T ¼ 30:0.

We compare the current result with that by the modified Harten’s TVD scheme [23] in Fig. 6.7. That method uses an arti-
ficial compression technique to enhance the resolution of the material interface (contact discontinuities in the present con-
text). By comparison, we clearly observe that the two results agree quite well in addition that the present GRP method gives
a slightly better resolution to discontinuities.

6.4. The numerical simulation of cylindrical implosion

!In the process of simulation of cylindrical implosion, we choose the same model as in [18,1,30,23]. The gas is ini-
tially at rest with non-dimensional q ¼ 1; p ¼ 1 for 0 6 r 6 20 and q ¼ 4; p ¼ 4 for 20 < r 6 50.

For this kind of problems, when the diaphragm separating the high and low pressure region is suddenly broken, there is
an inward converging shock wave in the low pressure region, a rarefaction wave moving out into the high pressure region
with a moving-in contact discontinuity separating the rarefaction wave and the shock wave. The moving-in shock with a
rapid increase of its strength soon implodes and reflects at the center. Fig. 6.8(left) records the time history of velocity profile.
From this figure, it is clearly shown that the shock wave moves inwards and implodes at the center at the time about
T ¼ 11:3. Fig. 6.9 shows a series of plots of flow density, velocity, pressure and internal energy at three time stages. The shock
wave with an increasing strength converges towards the center at T ¼ 10:0 and makes implosion at the center at T ¼ 11:3.
Because of the implosion, the pressure increases rapidly to a large but finite value. The temperature and density at the center
also attain their maximum values at the same time. After its implosion, the shock wave is reflected outwards with a decrease
of its strength as shown in Fig. 6.9 at T ¼ 14:0. Subsequent shock wave interaction with the moving contact discontinuity and
implosion at the center can occur many times as discussed in [23]. In the present study, we stopped the computation at
T ¼ 20:0.
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As comparison, we provide a numerical solution obtained with the reflection boundary condition [17] at the center r ¼ 0.
In Fig. 6.8, we compare the solutions via the velocity contours. In Fig. 6.8(a), we observe that some oscillations of velocity
profile are present near the center if the reflection boundary condition is used. The current proposed boundary condition
can avoid the oscillations effectively. Furthermore, the phenomenon of the time delay is observed at the moment that the
shock wave implodes at the center, see Fig. 6.8(b). That is, there is an interval between the implosion time and the reflection
time of the shock wave at the center. In Fig. 6.10, we display the complete solution with the reflection boundary condition so
as to compare with Fig. 6.9 by the GRP scheme with the current boundary condition.

Similar to the case of explosion, we had compared the present GRP result with that obtained by the modified Harten’s TVD
scheme for this case. See Fig. 6.11.
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Appendix A. Notations

In Table 1, we list some notations used in this paper.

Appendix B. Basic differential relations for fluid flows

To resolve curved rarefaction waves, we need to use the concept of Riemann invariants and provide some differential rela-
tions among different variables. For more details, we can refer to [8].

For this purpose, we write the system of Euler equations (2.1) in the following form:
Table 1
Basic n

Symbol

q; u;p; S
/;W
QL;QR

Q 0L;Q
0
R ,

RAð�; QL

Q�
Q1;Q2

ð@Q=@t
DQ=Dt
ðDQ=Dt
u� c; u
b;a
rL;rR

l2 ¼ ðc
Dq
Dt
þ q

@u
@r
¼ �m� 1

r
qu; q

Du
Dt
þ @p
@r
¼ 0;

DS
Dt
¼ 0; ðB:1Þ
where D=Dt ¼ @=@t þ u@=@r is the material derivative, and the entropy S is related to the other variables through the second
law of thermodynamics
de ¼ TdSþ p
q2 dq; ðB:2Þ
and T is the temperature. Regard p as a function of q and S; p ¼ pðq; SÞ. Then the local sound speed c is defined as
c2 ¼ @pðq; SÞ
@q

: ðB:3Þ
Thus the first or third equation of (B.1) can be replaced equivalently by
Dp
Dt
þ qc2 @u

@r
¼ �m� 1

r
qc2u: ðB:4Þ
Observe that the entropy S is constant along a streamline. Introduce the Riemann invariants / and W,
otations.

s Definitions

Density, velocity, pressure, entropy
Riemann invariants
lim Qðr; 0Þ as r ! r0�; r ! r0þ
Constant slopes @Q=@r for r < r0; r > r0

;QRÞ Solution of the Riemann problem subject to data QL;QR

RAð0; QL;QRÞ
The value of Q to the left, the right of contact discontinuity

Þ� ð@Q=@tÞðr; tÞ at r ¼ r0 as t ! 0þ
The material derivative of Q ; @Q=@t þ u � @Q=@r

Þ� The limiting value of DQ=Dt at r ¼ r0 as t ! 0þ
;uþ c Three eigenvalues

Two characteristic coordinates
Shock speed at time zero, corresponding to u� c; uþ c

� 1Þ=ðcþ 1Þ c > 1 the polytropic index, c ¼ 1:4 for air



/ ¼ u�
Z q cðx; SÞ

x
dx; W ¼ uþ

Z q cðx; SÞ
x

dx: ðB:5Þ
Recall [6] that along the characteristic Cþ : dr=dt ¼ uþ c we have
dW ¼ Kðq; SÞdS�m� 1
r

cudt; dS ¼ c
@S
@r

dt; ðB:6Þ
and, along C� : dr=dt ¼ u� c,
d/ ¼ �Kðq; SÞdSþm� 1
r

cudt; dS ¼ �c
@S
@r

dt: ðB:7Þ
In particular, in the important case of polytropic gases, we have
p ¼ ðc� 1Þqe; c > 1; ðB:8Þ
where e is a function of S alone. Then the Riemann invariants are
/ ¼ u� 2c
c� 1

; W ¼ uþ 2c
c� 1

; ðB:9Þ
where c2 ¼ cp=q. In this case, we have
Kðq; SÞ ¼ 1
ðc� 1Þqc

@p
@S
¼ T

c
; ðB:10Þ
and
d/ ¼ du� c
ðc� 1Þqc

dpþ c
ðc� 1Þq dq; dW ¼ duþ c

ðc� 1Þqc
dp� c

ðc� 1Þq dq;

TdS ¼ dp
ðc� 1Þq�

c2

ðc� 1Þq dq: ðB:11Þ
Appendix C. The Rankine–Hugoniot relations for shocks

Let r ¼ rðtÞ be the shock trajectory with speed r ¼ dr=dt,
r ¼ qu� �q�u
q� �q

; ðC:1Þ
r¼q
where we assume that



5882 J. Li et al. / Journal of Computational Physics 228 (2009) 5867–5887
and
Gðp; �p; �qÞ ¼ �q
pþ l2�p
�pþ l2p

; G1ðp; �p; �qÞ ¼
�qð1� l4Þ�p
ð�pþ l2pÞ2

;

G2ðp; �p; �qÞ ¼
�qðl4 � 1Þp
ð�pþ l2pÞ2

; G3ðp; �p; �qÞ ¼ pþ l2�p
�pþ l2p

:

ðC:7Þ
Appendix D. Derivation of linear equations in Propositions 4.1 and 4.6

Here we want to derive the pair of linear Eq. (4.4) in Proposition 4.1 and the linear Eq. (4.7) in Proposition 4.6, which are
obtained by solving the generalized Riemann problem.

D.1. Derivation of linear Eq. (4.4)

The derivation of (4.4) is equivalent to the following proposition.

Proposition D.1 (Nonsonic case). Assume that the t-axis is located inside the intermediate region. Then the limiting values
ðDu=DtÞ� and ðDp=DtÞ� as t ! 0þ are obtained by solving a pair of linear algebraic equations
aL
Du
Dt

� �
�
þ bL

Dp
Dt

� �
�
¼ dL;

aR
Du
Dt

� �
�
þ bR

Dp
Dt

� �
�
¼ dR;

ðD:1Þ
where aL; aR; bL; bR; dL and dR are summarized for all cases in Appendix E, respectively.

Proof. We consider a typical wave configuration in Fig. D.1, the rarefaction wave moves to the left and the shock moves to
the right, separated by a contact discontinuity with the speed u. The other cases can be treated similarly. The proof is divided
into two parts: The resolution of the rarefaction wave associated with u� c, and the shock wave associated with uþ c.

A. The resolution of rarefaction waves: Consider the rarefaction wave associated with u� c and denote by U�ðr; tÞ (resp.
U1ðr; tÞ) the states (regions of smooth flows) ahead (resp. behind) the rarefaction wave, see Fig. D.1(a), where U�ðr; tÞ is
determined by the left initial data UL þ U0Lðr � r0Þ. Characteristic curves throughout the rarefaction wave are denoted by
Fig. D.1. Typical wave configuration.
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bðr; tÞ ¼ b and aðr; tÞ ¼ a; b 2 ½bL; b��;�1 6 a < 0; bL ¼ uL � cL; b� ¼ u� � c�. They are the integral curves of the following
equations, respectively:
dr
dt
¼ u� c;

dr
dt
¼ uþ c: ðD:2Þ
Here b and a are denoted as follows: b is the initial value of the slope u� c at the singularity ðr; tÞ ¼ ðr0;0Þ, and a for the
transversal characteristic curves is the r-coordinate of the intersection point with the leading b-curve, which may be prop-
erly normalized for polytropic gases. Then the coordinates ðr; tÞ can be expressed as
r ¼ rða;bÞ; t ¼ tða; bÞ; ðD:3Þ
which satisfy
@r
@a
¼ ðu� cÞ @t

@a
;

@r
@b
¼ ðuþ cÞ @t

@b
: ðD:4Þ
Differentiating the first equation in (D.4) with respect to b, the second with respect to a, and subtracting, we see that the
function t ¼ tða; bÞ satisfies,
2c
@2t
@a@b

¼ � @ðuþ cÞ
@a

� @t
@b
þ @ðu� cÞ

@b
� @t
@a

; ðD:5Þ
and the characteristic equations for W and S in (B.6) become
@S
@b
¼ @t
@b
� c @S
@r
;

@W
@b
¼ @t
@b
� cKðq; SÞ @S

@r
�m� 1

r
cu

� �
: ðD:6Þ
Note that for the general (curved) rarefaction wave, see Fig. D.1(a), we have
@ðu� cÞ
@b

ð0; bÞ ¼ 1;
@t
@b
ð0; bÞ � 0; bL 6 b 6 b�: ðD:7Þ
Denote
tassða; bÞ ¼
a

ðWL � bÞ
1

2l2
; rassða;bÞ ¼

ab

ðWL � bÞ
1

2l2
; l2 ¼ c� 1

cþ 1
; ðD:8Þ
where �1 < a 6 0; bL :¼ uL � cL 6 b 6 b� :¼ u� � c� and WL ¼ uL þ 2cL
c�1. Then the coordinates ðr; tÞ inside the rarefaction wave

can be expressed as
tða; bÞ ¼ tassða;bÞ þ Oða2Þ; rða;bÞ ¼ r0 þ rassða;bÞ þ Oða2Þ; as a! 0: ðD:9Þ
Then the characteristic map T : ða; bÞ ! ðr; tÞ transforms the domain fða; bÞj �1 < a 6 0; bL 6 b 6 b�g onto the rarefaction
fan, and the segment a ¼ 0; bL 6 b 6 b� corresponds to the singularity point ðr; tÞ ¼ ðr0;0Þ. The leading term ðrass; tassÞ deter-
mines the local solution structure.

We use (B.1), (B.4) and (B.6) to yield
Du
Dt
þ 1

qc
Dp
Dt
¼ DW

Dt
: ðD:10Þ
So we need to compute DW=Dt at ð0; bÞ. From (B.6) we have
DW
Dt
¼ cKðq; SÞ @S

@r
� c

@W
@r
�m� 1

r
cu: ðD:11Þ
Denote
Aða; bÞ :¼ cKðq; SÞ � @S
@r
ða;bÞ; Bða;bÞ :¼ Aða; bÞ �m� 1

r
cu: ðD:12Þ
Then we just need to compute Að0; bÞ and cð0; bÞ @W
@r ð0; bÞ separately. Compared to the 1-D planar flows, there is an extra term

caused by the geometrical source term:

(i) The computation of Að0; bÞ. The detail is exactly the same with the corresponding part of Lemma 3.1 in [8]. There holds,
Að0; bÞ ¼ Kðqð0; bÞ; SLÞ �
@tass

@a

� ��1

ð0; bÞ @tass

@a

� �
ð0;bLÞ � cLS0L exp �

Z b

bL

1
2cð0; nÞdn

� �
: ðD:13Þ
For the polytropic gases, we have,
Að0; bÞ ¼ c
cL

� �ð1þl2Þ=l2

TLS0L; ðD:14Þ



5884 J. Li et al. / Journal of Computational Physics 228 (2009) 5867–5887
where TLS0L is given by (B.11).
(ii) The computation of cð0; bÞ � @W

@r ð0; bÞ. As in [8], we observe that
cð0; bÞ @W
@r
ð0;bÞ ¼ �1

2
@tass

@a

� ��1

ð0; bÞ � @W
@a
ð0; bÞ � Bð0; bÞ

" #
: ðD:15Þ
Note that Að0; bÞ, as function of b, is already known in (D.13), so we obtain Bð0; bÞ from (D.12). Therefore we are left with the
calculation of ð@W=@aÞð0; bÞ. The characteristic equation for W in (D.6) gives
@2W
@a@b

¼ @2t
@a@b

� Bða;bÞ þ @t
@b

@Bða; bÞ
@a

: ðD:16Þ
Setting a ¼ 0 and recalling (D.5) and (D.7), we obtain
@

@b
@W
@a
ð0; bÞ

� �
¼ 1

2cð0;bÞ �
@tass

@a
ð0;bÞ � Bð0;bÞ: ðD:17Þ
The integration from bL to b and the substitution of Bð0; bÞ by Að0; bÞ give,
@W
@a
ð0; bÞ ¼ @W

@a
ð0; bLÞ þ

Z b

bL

1
2cð0; nÞ �

@tass

@a
ð0; nÞ � Að0; nÞdn�m� 1

2r0

Z b

bL

uð0; nÞ � @tass

@a
ð0; nÞdn; ðD:18Þ
where ð@W=@aÞð0; bLÞ is obtained from (D.15) by setting b ¼ bL and ð@W=@rÞð0; bLÞ ¼ W0L.
For the polytropic gases, we have
u ¼ l2WL þ ð1� l2Þb: c ¼ l2ðWL � bÞ; ðD:19Þ
By using (D.8), (D.14) and (D.19) and noting T=TL ¼ c2=c2
L , we obtain
@W
@a
ð0; bÞ ¼ @W

@a
ð0; bLÞ �

BL

1þ 2l2 cð1þ2l2Þ=ð2l2Þ � cð1þ2l2Þ=ð2l2Þ
L

� �
þm� 1

2r0
vLðbÞ: ðD:20Þ
where BL;Wað0; bLÞ;vLðbÞ are given by
BL ¼ ðl2Þ1=ð2l
2Þc�ðl

2þ1Þ=l2

L TLS0L;

Wað0; bLÞ ¼ ðWL � bLÞ
� 1

2l2 TLS0L �
m� 1

r0
cLuL � 2cLW

0
L

� �
; W0L ¼ u0L þ

2c0L
c� 1

:

vLðbÞ ¼

2l2ðELðbÞ � ELðbLÞÞ; if c– 5
3 ; c–3;

cL � c þWL log c
cL

� �
; if c ¼ 3;

� 3
4 log c

cL

� �
� WL

4
1
c � 1

cL

� �
; if c ¼ 5

3 ;

8>>><>>>:
ðD:21Þ
and
ELðbÞ ¼ ðWL � bÞ�
1

2l2 ðl2 � 1Þ
4l2 � 1

ðWL � bÞ2 þ WL

2l2 � 1
ðWL � bÞ

� �
: ðD:22Þ
Then we obtain cð0; bÞ @W
@r ð0; bÞ by combining (D.20) with (D.15).

Inserting (D.14) and (D.15) into (D.11), we obtain the value DW=Dtð0; bÞ, as given in dL (for the polytropic gases). Thus we
obtain the first equation in (D.1).

B. The resolution of shocks: We take along the shock trajectory the differentiation @
@t þ r @

@r

� 	
C ¼ 0 for C ¼ u� �u� Hðp; �p; �qÞ

to obtain
@u
@t
þ r @u

@r
¼ @

�u
@t
þ r @

�u
@r
þ @H
@p
� @p

@t
þ r @p

@r

� �
þ @H
@�p
� @�p

@t
þ r @

�p
@r

� �
þ @H
@�q
� @�q

@t
þ r @

�q
@r

� �
: ðD:23Þ
Using (B.1) and (B.4), we have
@u
@t
þ r @u

@r
¼ Du

Dt
� 1

qc2 ðr� uÞDp
Dt
�m� 1

r0
ðr� uÞu;

@p
@t
þ r @p

@r
¼ Dp

Dt
� qðr� uÞDu

Dt
:

ðD:24Þ
Then we use (B.1) and (B.4) again to replace the time derivatives of �p; �q by the corresponding space derivatives and proceed
to take the limit t ! 0þ for the resulting equation to finally obtain the second equation in (D.1). h
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D.2. Derivation of linear Eq. (4.7)

We still take the wave configuration in Fig. D.1. As u� > 0, we calculate ð@q=@tÞ� from the rarefaction wave side. Use the
state equation p ¼ pðq; SÞ and the fact @S

@t ¼ �u @S
@r to obtain
Table 2
Useful c

Two rar

Two sh

Left sho

Left rar

Table 3
Useful c

u� > 0

u� < 0
@p
@t
¼ c2 @q

@t
þ @p
@S

@S
@t
¼ c2 @q

@t
� u

@p
@S

@S
@r
: ðD:25Þ
Then we set ða; bÞ ¼ ð0; b�Þ to arrive at
c2
1�

@q
@t

� �
�
� @p

@t

� �
�
¼ @p
@S
ðq1�; S�Þ �

u�
c1�Kðq1�; S�Þ

Að0;b�Þ; ðD:26Þ
where Að0; b�Þ is given in (D.13). For the polytropic gases, we have
c2
1�

@q
@t

� �
�
� @p

@t

� �
�
¼ ðc� 1Þq1�u�

c1�

cL

� �ð1þl2Þ=l2

TLS0L: ðD:27Þ
As u� < 0, we take along the shock trajectory r ¼ rðtÞ the differentiation @
@t þ r @

@r

� 	
C ¼ 0 for C ¼ q� Gðq; �p; �qÞ, exactly as was

done in the proof of Lemma 4.1 in [8, pp. 28–29]. Then we obtain the formula
gRshock
q

@q
@t

� �
�
þ gRshock

p
@p
@t

� �
�
þ gRshock

u
@u
@t

� �
�
¼ f Rshock; ðD:28Þ
where gRshock
q ; gRshock

p ; gRshock
u and f Rshock are given in (E.10).

Also we remark that if u� ¼ 0, we can use either (D.26) or (D.28).

Appendix E. Useful coefficients for the GRP scheme

We collect in Table 2 for all cases the coefficients of the system of the linear algebraic equations in Proposition 4.1 and in
Table 3 for Proposition 4.6 for the polytropic gases. Here we assume that the t-axis (cell interface) is located inside the inter-
mediate region. In these tables, the 1-shock (resp. 3-shock) refers to the shock associated with the u� c characteristic family
(resp. uþ c). Analogously for the 1-rarefaction wave and the 3-rarefaction wave.

Below we denote J ¼ L or R. For example, as J ¼ L;QJ represents the value of Q taken from the left. And particularly, we
denote ðqL�; cL�Þ ¼ ðq1�; c1�Þ and ðqR�; cR�Þ ¼ ðq2�; c2�Þ.

E.1. The coefficients in Proposition 4.1 for all cases

The coefficients in Proposition 4.1 are given by
hJ ¼ aJ � q�u�bJ; qJ ¼ bJ �
u�

q�c2
�

aJ ; kJ ¼
m� 1

r0
u2
�hJ þ

c2
� � u2

�
c2
�

dJ ; ðE:1Þ
oefficients solving linear algebraic equations in Proposition 4.1.

efaction waves ðaL; bLÞ ¼ ðarare
L ; brare

L Þ; dL ¼ drare
L

ðaR; bRÞ ¼ ðarare
R ; brare

R Þ; dR ¼ drare
R

ocks ðaL; bLÞ ¼ ðashock
L ; bshock

L Þ; dL ¼ dshock
L

ðaR; bRÞ ¼ ðashock
R ; bshock

R Þ;dR ¼ dshock
R

ck and right rarefaction wave ðaL; bLÞ ¼ ðashock
L ; bshock

L Þ; dL ¼ dshock
L

ðaR; bRÞ ¼ ðarare
R ; brare

R Þ; dR ¼ drare
R

efaction wave and right shock ðaL; bLÞ ¼ ðarare
L ; brare

L Þ; dL ¼ drare
L

ðaR; bRÞ ¼ ðashock
R ; bshock

R Þ;dR ¼ dshock
R

oefficients in Proposition 4.6.

Left rarefaction wave ðgq; gu; gp ; f Þ ¼ ðgLrare
q ; gLrare

u ; gLrare
p ; f LrareÞ

Left shock ðgq; gu; gp ; f Þ ¼ ðgLshock
q ; gLshock

u ; gLshock
p ; f LshockÞ

Right rarefaction wave ðgq; gu; gp ; f Þ ¼ ðgRrare
q ; gRrare

u ; gRrare
p ; f RrareÞ

Right shock ðgq; gu; gp ; f Þ ¼ ðgRshock
q ; gRshock

u ; gRshock
p ; f RshockÞ
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where we denote
ðq�; c�Þ ¼
ðq1�; c1�Þ; for u� > 0;
ðq2�; c2�Þ; for u� 6 0:

�
ðE:2Þ
The parameters in (E.1) for rarefaction waves are given by
ðarare
L ; brare

L Þ ¼ 1;
1

q1�c1�

� �
; ðarare

R ; brare
R Þ ¼ 1;� 1

q2�c2�

� �
;

drare
J ¼ 1þ l2

1þ 2l2 h1=ð2l2Þ
J þ l2

1þ 2l2 hð1þl2Þ=l2

J

� �
TJS

0
J þ sgnðJÞcJ g0ðJÞ þm� 1

2r0
uJ

� �
h1=ð2l2Þ

J þm� 1
2r0

cJ�½UJðcJ�Þ þ sgnðJÞu��;

ðE:3Þ
where hL ¼ c1�
cL
; hR ¼ c2�

cR
, and UJðcJ�Þ are given by
UJðcJ�Þ ¼

ðl2�1ÞcJ�
l2ð4l2�1Þ 1� h

1�4l2

2l2

J

 !
� sgnðJÞ gðJÞ

2l2�1 1� h
1�2l2

2l2

J

 !
; if c– 5

3 ; c–3;

cJ � cJ� � sgnðJÞgðJÞ log hJ; if c ¼ 3;
�2½3cJ� log hJ � sgnðJÞgðJÞð1� hJÞ�; if c ¼ 5

3 ;

8>>>><>>>>: ðE:4Þ
and
sgnðJÞ ¼
�1; for J ¼ L;

1; for J ¼ R;

�
gðJÞ ¼

WL; for J ¼ L;

/R; for J ¼ R:

�
ðE:5Þ
The parameters in (E.1) for shock waves are given by
ashock
J ¼ 1þ sgnðJÞqJ�ðrJ � u�ÞHJ

1; bshock
J ¼ � 1

qJ�c
2
J�
ðrJ � u�Þ � sgnðJÞHJ

1;

dshock
J ¼ LJ

pp0J þ LJ
uu0J þ LJ

qq
0
J �

m� 1
r0

LJ
s;

ðE:6Þ
where all quantities involved are
rJ ¼
qJ�u� � qJuJ

qJ� � qJ
;

LJ
p ¼ �

1
qJ
þ sgnðJÞðrJ � uJÞHJ

2; LJ
u ¼ rJ � uJ � sgnðJÞðqJc

2
J HJ

2 þ qJH
J
3Þ;

LJ
q ¼ sgnðJÞðrJ � uJÞHJ

3; LJ
s ¼ sgnðJÞðqJuJc2

J HJ
2 þ qJuJH

J
3Þ � ðrJ � u�Þu�;

ðE:7Þ
and HJ
i ¼ Hiðp�; pJ;qJÞ; i ¼ 1;2;3;Hi is referred to (C.6).

E.2. Sonic case

When the t-axis is located inside the rarefaction wave associated with uþ c. Then we have
@u
@t

� �
�
¼ drare

R þm� 1
r0

u2
� ;

@p
@t

� �
�
¼ q�u�d

rare
R ; ðE:8Þ
where drare
R is given in (E.3), and c2� ¼ �u� in (E.3).

E.3. The coefficients in Proposition 4.6

Here we list the coefficients ðgq; gu; gp; f Þ in Proposition 4.6 for all cases.
The coefficients in Table 3 for the rarefaction wave cases are:
ðgJrare
q ; gJrare

p ; gJrare
u Þ ¼ ðc2

J�;�1; 0Þ; f Jrare ¼ ðc� 1ÞqJ�u�
cJ�

cJ

� �ð1þl2Þ=l2

TJS
0
J : ðE:9Þ
The coefficients Table 3 for shock wave cases are given by
gJshock
q ¼ ðu� � rJÞ � ðc2

J� � u2
� Þ;

gJshock
p ¼ rJ � u�G

J
1 � ½c2

J� þ u�ðrJ � u�Þ�;

gJshock
u ¼ qJ�u�rJðc2

J�G
J
1 � 1Þ; f Jshock ¼ u�ðc2

J� � u2
� Þ � ~f J þ

m� 1
r0

u2
�g

Jshock
u ;

ðE:10Þ
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where GJ
i ¼ Giðp�; pJ;qJÞ; i ¼ 1;2;3;rJ ¼

qJ�u��qJ uJ

qJ��qJ
, and
~f J ¼ ðrJ � uJÞ � GJ
2 � p0J þ ðrJ � uJÞ � GJ

3 � q0J � qJ � ðG
J
2 � c2

J þ GJ
3Þ � u0J þ

m� 1
r0

uJ

� �
: ðE:11Þ
The definition of Gi is referred to (C.7).
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